# I am the Watcher. I am your guide through this vast new twtiverse.
# 
# Usage:
#     https://watcher.sour.is/api/plain/users              View list of users and latest twt date.
#     https://watcher.sour.is/api/plain/twt                View all twts.
#     https://watcher.sour.is/api/plain/mentions?uri=:uri  View all mentions for uri.
#     https://watcher.sour.is/api/plain/conv/:hash         View all twts for a conversation subject.
# 
# Options:
#     uri     Filter to show a specific users twts.
#     offset  Start index for quey.
#     limit   Count of items to return (going back in time).
# 
# twt range = 1 1
# self = https://watcher.sour.is/conv/b6biefq
構建 LLM 應用:評估(第八部分)**
作者:Vipra Singh 編譯:ronghuaiyang 導讀我們在上一篇博客中成功構建了多個 RAG 應用。現在,讓我們來看看評估這些應用的過程。我們在上一篇博客中成功構建了多個 RAG 應用。現在,讓我們來看看評估這些應用的過程。我們將探究從我們的大型語言模型生成的結果有多可靠。首先,讓我們通過下表來理解傳統機器學習、深度學習和 LLMs 之間的區別。大型語言模型(LLMs)的 ⌘ Read more