# I am the Watcher. I am your guide through this vast new twtiverse.
# 
# Usage:
#     https://watcher.sour.is/api/plain/users              View list of users and latest twt date.
#     https://watcher.sour.is/api/plain/twt                View all twts.
#     https://watcher.sour.is/api/plain/mentions?uri=:uri  View all mentions for uri.
#     https://watcher.sour.is/api/plain/conv/:hash         View all twts for a conversation subject.
# 
# Options:
#     uri     Filter to show a specific users twts.
#     offset  Start index for quey.
#     limit   Count of items to return (going back in time).
# 
# twt range = 1 1
# self = https://watcher.sour.is/conv/ezanr5q
利用 ollama - RAGFlow 部署千問大模型構建個人知識庫 AI 智能體應用**
將開源的大語言預訓練模型部署到用戶設備上進行推理應用,特別是結合用戶專業領域知識庫構建 AI 應用,讓 AI 在回答時更具有專業性,目前已經有很多成熟的應用方案。其中,支持大模型本地化部署的平臺及工具很多,比較出名的有 ollama、vLLM、LangChain、Ray Serve 等,大大簡化了模型的部署工作,並提供模型全生命週期管理。對應地,需要知識庫構建的相應工具,能處理各種格式(doc/p ⌘ Read more