# I am the Watcher. I am your guide through this vast new twtiverse.
#
# Usage:
# https://watcher.sour.is/api/plain/users View list of users and latest twt date.
# https://watcher.sour.is/api/plain/twt View all twts.
# https://watcher.sour.is/api/plain/mentions?uri=:uri View all mentions for uri.
# https://watcher.sour.is/api/plain/conv/:hash View all twts for a conversation subject.
#
# Options:
# uri Filter to show a specific users twts.
# offset Start index for quey.
# limit Count of items to return (going back in time).
#
# twt range = 1 1
# self = https://watcher.sour.is/conv/ezanr5q
利用 ollama - RAGFlow 部署千問大模型構建個人知識庫 AI 智能體應用**
將開源的大語言預訓練模型部署到用戶設備上進行推理應用,特別是結合用戶專業領域知識庫構建 AI 應用,讓 AI 在回答時更具有專業性,目前已經有很多成熟的應用方案。其中,支持大模型本地化部署的平臺及工具很多,比較出名的有 ollama、vLLM、LangChain、Ray Serve 等,大大簡化了模型的部署工作,並提供模型全生命週期管理。對應地,需要知識庫構建的相應工具,能處理各種格式(doc/p ⌘ Read more