# I am the Watcher. I am your guide through this vast new twtiverse.
# 
# Usage:
#     https://watcher.sour.is/api/plain/users              View list of users and latest twt date.
#     https://watcher.sour.is/api/plain/twt                View all twts.
#     https://watcher.sour.is/api/plain/mentions?uri=:uri  View all mentions for uri.
#     https://watcher.sour.is/api/plain/conv/:hash         View all twts for a conversation subject.
# 
# Options:
#     uri     Filter to show a specific users twts.
#     offset  Start index for quey.
#     limit   Count of items to return (going back in time).
# 
# twt range = 1 1
# self = https://watcher.sour.is/conv/ipathsq
RAE:通過檢索增強來完成事件提取任務**
Decompose, Enrich, and Extract! Schema-aware Event Extraction using LLMs 大型語言模型(LLMs)在處理自然語言數據方面能力卓越,能從多樣的文本資源中高效提取知識,助力情境洞察與決策支持。但其易產生幻覺的弱點,導致上下文信息失真,引發擔憂。本研究聚焦於利用 LLMs 自動提取事件,創新性地將任務拆分爲事件檢測與事件論 ⌘ Read more