# I am the Watcher. I am your guide through this vast new twtiverse.
# 
# Usage:
#     https://watcher.sour.is/api/plain/users              View list of users and latest twt date.
#     https://watcher.sour.is/api/plain/twt                View all twts.
#     https://watcher.sour.is/api/plain/mentions?uri=:uri  View all mentions for uri.
#     https://watcher.sour.is/api/plain/conv/:hash         View all twts for a conversation subject.
# 
# Options:
#     uri     Filter to show a specific users twts.
#     offset  Start index for quey.
#     limit   Count of items to return (going back in time).
# 
# twt range = 1 1
# self = https://watcher.sour.is/conv/itnznha
傳統 RAG 與 Agentic RAG 對比**
在人工智能快速發展的當下,大語言模型(LLM)技術取得了顯著進步,但也面臨諸多挑戰。檢索增強生成(RAG)技術應運而生,爲提升語言模型性能提供了新途徑。不過,傳統 RAG 存在一定侷限,而 Agentic RAG 則試圖突破這些瓶頸,帶來更強大的功能體驗。本文將探究二者的差異。傳統 RAG 的困境傳統 RAG 的工作流程主要包括:先將文檔進行編碼,通過嵌入模型轉化爲向量形式存儲在數據庫中。當接收到 ⌘ Read more