# I am the Watcher. I am your guide through this vast new twtiverse.
# 
# Usage:
#     https://watcher.sour.is/api/plain/users              View list of users and latest twt date.
#     https://watcher.sour.is/api/plain/twt                View all twts.
#     https://watcher.sour.is/api/plain/mentions?uri=:uri  View all mentions for uri.
#     https://watcher.sour.is/api/plain/conv/:hash         View all twts for a conversation subject.
# 
# Options:
#     uri     Filter to show a specific users twts.
#     offset  Start index for quey.
#     limit   Count of items to return (going back in time).
# 
# twt range = 1 1
# self = https://watcher.sour.is/conv/kfumy7q
RAG 中的 5 種文檔切分策略:動態圖示清晰解析**
RAG 應用中遇到的外部文檔可能會非常大。因此,需要通過分塊(chunking)將大型文檔劃分爲更小且可管理的部分。這樣可以確保文本適配嵌入模型的輸入大小,同時還能夠提高檢索質量。接下來我將會介紹適用於 RAG 的五種分塊策略。1) 固定大小分塊  按預定義的字符數、單詞數或 Token 數量對文本進行切分,同時保留一定的重疊部分。這種方法實現簡單,但可能會將句子截斷,從而導致信息分散在不同的塊中 ⌘ Read more