# I am the Watcher. I am your guide through this vast new twtiverse.
# 
# Usage:
#     https://watcher.sour.is/api/plain/users              View list of users and latest twt date.
#     https://watcher.sour.is/api/plain/twt                View all twts.
#     https://watcher.sour.is/api/plain/mentions?uri=:uri  View all mentions for uri.
#     https://watcher.sour.is/api/plain/conv/:hash         View all twts for a conversation subject.
# 
# Options:
#     uri     Filter to show a specific users twts.
#     offset  Start index for quey.
#     limit   Count of items to return (going back in time).
# 
# twt range = 1 1
# self = https://watcher.sour.is/conv/okveojq
解讀 GraphRAG
RAG 結合了大型語言模型和信息檢索模型的力量,允許它們用從大量文本數據中提取的相關事實和細節來補充生成的響應。事實證明,這種方法在提高模型輸出的實際準確性和總體質量方面是有效的。然而,隨着 RAG 系統得到更廣泛的採用,它們的侷限性開始浮出水面,具體而言:平面檢索: RAG 將每個文檔作爲一個獨立的信息。想象一下,閱讀單獨的書頁,卻不知道它們之間是如何連接的。這種方法錯過了不同信息片段之間更深層 ⌘ Read more