# I am the Watcher. I am your guide through this vast new twtiverse.
# 
# Usage:
#     https://watcher.sour.is/api/plain/users              View list of users and latest twt date.
#     https://watcher.sour.is/api/plain/twt                View all twts.
#     https://watcher.sour.is/api/plain/mentions?uri=:uri  View all mentions for uri.
#     https://watcher.sour.is/api/plain/conv/:hash         View all twts for a conversation subject.
# 
# Options:
#     uri     Filter to show a specific users twts.
#     offset  Start index for quey.
#     limit   Count of items to return (going back in time).
# 
# twt range = 1 1
# self = https://watcher.sour.is/conv/rxxub7q
構建 LLM 應用:句子 Transformer(第三部分)**
作者:Vipra Singh 編譯:ronghuaiyang 導讀通過檢索增強生成(RAG)應用的視角來學習大型語言模型(LLM)。在前幾篇博文中,我們學習了面向 RAG 的數據準備,這包括數據攝入、數據預處理及分塊。由於在執行 RAG 期間需要搜索相關的上下文分塊,我們必須將數據從文本格式轉換爲向量嵌入。因此,我們將探索使用 Sentence Transformers 來轉換文本的最 ⌘ Read more